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Introduction 
 
Reinforcement Learning theories have contributed greatly to our understanding of how our learning and 

decision-making is shaped by external reward through providing a framework to which neural correlates 

could mapped on. However, in everyday life, we generally do not receive external rewards like food or 

money that guide our behavior. Instead, we set goals for our self, and use them as reference points in 

learning the correct actions to take. A large body of work from behavioral economics and social 

psychology has found that goal setting is intrinsically motivating, and hence goal achievement is, in itself, 

valuable. This suggests that it may function as a pseudo-reward, with the same reinforcing properties as 

external reward. Merging ideas from RL theory and behavioral economics, it is plausible that the same 

computations that are performed on external reward may be performed on goal achievement if it generates 

a pseudo-reward.  

 

Reinforcement Learning (RL) Algorithms and their Neural Substrates 

Reinforcement Learning is learning the correct actions to take in a certain environment in the pursuit of 

maximizing reward over time. It is distinguished by its trial-and-error nature: the learner has no examples 

of desired behavior to learn from, so she predicts the outcomes of the possible actions she can take, 

selects an action, receives feedback, and uses the difference between the actual outcome of her action and 

the predicted outcome to drive her learning  (Sutton & Barto, 1998). The difference between actual and 

expected outcome is referred to as the reward prediction error (RPE). There is a wealth of evidence 

linking computational constructs in RL to neural substrates (Niv, 2009). Specifically, it has been found 

that during reward-based learning the firing of dopaminergic cells in ventral tegmental area (VTA)  and 

substantia nigra signal RPE (Montague, Dayan & Sejnowski, 1996; Schultz et al., 1997). These cells 
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synapse on to other cells in striatum, nucleus accumbens, and frontal cortex,  structures implicated in 

motivation and goal-directed behavior.  

Hierarchical Reinforcement Learning (HRL) 

Classic RL can only describe a small subset of learning problems. Most of our behaviors are complex and 

hierarchically structured. Lashley (1951) observed that a sequence of primitive actions requires a 

higher-level task context representation. An extension of RL is Hierarchical Reinforcement Learning 

(HRL) (Parr & Russell, 1998; Sutton et al., 1999; Barto & Mahadeven, 2003). There are multiple 

implementations of HRL. Within the MAXQ implementation (Dietterich, 2000), a goal to be completed is 

divided into internally-defined subgoals. Reaching a subgoal elicits a pseudo-reward, referred to as such 

to differentiate it from the reward of reaching the overall goal. Learning of subroutines to complete the 

subtask is driven by a pseudo-reward prediction error (PPE) that functions similarly to a RPE.   The 

subgoal may not lead to an external reward at all. Its value stems from the agent internally defining it as 

valuable.  The HAM implementation (Parr & Russell 1998) does not use pseudo-rewards, instead relying 

on exogenous rewards and prior knowledge constraining the policies considered. These different 

implementations make different predictions for dopaminergic function (Botvinik, Niv, & Barto, 2009).  A 

prediction originating from the MAXQ framework, is that a neural substrate of the pseudo-reward 

prediction error should exist. Results from fMRI studies have been consistent with this. Ribas-Fernandes 

et al. (2011) found that structures responsive to RPEs also responded to PPEs.  In another study, 

dopaminergic neurons were found to have the ability to signal both a global reward prediction error and 

local pseudo-reward prediction error that temporally coincided (Diuk et al, 2013). Taken together, these 

are indications that neural correlates of RPEs are more flexible in their use than previously thought.  

 

Goal Achievement and Intrinsic Motivation  
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There is a rich body of research in behavioral economics and social psychology on the psychological 

value of goal achievement. A goal may be or lead to an extrinsic reward. However, for our purposes, 

when referring to goals, we will be referencing “mere goals.” Mere goals differ from extrinsic reward in 

that they describe a certain level of performance/achievement that does not affect external amounts of 

reward (Heath, Larrick, & Wu, 1999). Goal setting has been shown to motivate behaviors that lead to 

those goals (McDougall, 1908; Mitchell, 1982).  Tied to this, goal setting has been shown to increase task 

performance (Locke & Latham, 1991; Mento, Steel & Karen, 1987; Tubbs, 1986; Mossholder 1980), 

goals that are internally-defined as opposed to assigned are particularly effective (Schmidt & Hunter, 

1983).  

 

We can draw parallels between Bandura’s theory of goal pursuit (1991) as discrepancy reduction and the 

role of reward in guiding behavior as prescribed by RL theories. Within Bandura’s framework, goals 

serve as desired end states and also as a reference point for evaluating performance, making the act of 

goal setting a discrepancy inducing process. Behavior is shaped by feedforward and feedback controls. 

Through feedforward control, an action is chosen and motivated by its predicted outcome. Once the action 

is performed, feedback received induces changes in order to reduce the discrepancy between prediction 

and actual outcome in service of getting closer to the goal (Bandura, 1988). This discrepancy reduction 

closely mirrors RL algorithms in which the difference between predicted reward and actual reward drives 

learning.  

 

Reward is defined by the value it has, but research on the psychological value of goal achievement and its 

relation to the value of reward is a relatively new area of research.  Ballard and colleagues (2017) found 

that the motivating effects of goals may lead to departures from objective reward maximizing behavior, 

indicating that there is subjective value attached to goal achievement. People exerted unnecessary effort in 
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order to obtain multiple goals. Interestingly, there were individual differences in the value attached to goal 

achievement 

 

Intrinsically-motivated Learning 

In classic RL, behavior is shaped by external reinforcers and punishers. However, we know that humans 

have both external and internal sources of motivation. Inspired by how humans learn, there has been a 

wave of RL research on intrinsically motivated learning, in which an agent engages in learning for their 

own sake rather than as a step towards an explicit end state (Barto, Singh, & Chentanez, 2004). This is 

implemented by making exploration rewarding in and of itself. Curiosity is the reinforcer as opposed to an 

external reward (Singh, 2005). This is biologically plausible as the dopaminergic neurons responding to 

RPEs also respond to salient novel stimuli.  It is reasonable that a motivational system as robust as the RL 

one would be flexible enough to perform computations on internal rewards as well as external ones.  

 

Merging the RL and Goal Achievement Literatures  

We seek to merge frameworks from both the reinforcement learning and goal setting literatures by 

answering the question: can goal-directed behavior leverage reinforcement learning mechanisms? We 

propose that goal achievement is treated as a pseudo-reward which allows RL computations to be 

performed upon it in order to drive learning the behaviors that brings the learner closer to their goals. 

Accordingly, the neural signature of PPEs should be similar to that of RPEs. However, there may be 

interesting differences in how people learn from rewards and pseudo-rewards behaviorally, and that could 

be correlated with neural differences. We aim to quantify the relative value of pseudo-rewards in relation 

to external rewards, explore how they influence computation, and how individual differences in value are 

reflected neurally.  
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Methods and Materials 

Experimental Protocol 

 

Figure 1: Experimental protocol a) Participants were asked to rate 20 fruits and vegetables on a scale of 1 to 5. This allowed us 
to identify 4 items of equal value that will become the four possible items that can be found in the boxes. 2 can be found in 
reward boxes, and the other 2 can be found in goal boxes  b) Structure of the learning phase and the test phase. Each box had a 
different expected value of reward/pseudo-reward. For both conditions, there were two pairs of boxes. In one pair, there was a 
box that would lead to a positive outcome (reward/goal) 80% of the time (solid line) paired with a box leading to a positive 
outcome 20% of the time (dashed line). In the other pair, one box would lead to a positive outcome 65% of the time (solid line) 
and the other 35% (dashed line).  Participants always saw the same boxes paired together and the items identified as reward, goal, 
non-reward, and non-goal retained their roles throughout the task. During the test phase, all eight boxes were shown paired 
together. Easy trials included AD (reward contingencies: 0.8/0.35) and CB (0.65/0.2)  pairs. Hard trials included AC (0.8/0.65) 
and DB(0.35/0.2)  pairs. Same value trials are ones in which a reward box and a goal box with the same expected value were 
paired together. C) During the learning phase, participants were shown two boxes and were asked to make a choice. The chosen 
box was displayed in the center of the screen, following which they received feedback in the form of a vegetable. D) During the 
test phase, participants were asked to pick one of two boxes. Their choice was displayed, however, they received no feedback. 
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We developed a novel variant of the probabilistic selection task (Frank, 2004) to directly compare how 

participants learned from two types of outcomes: external reward and goal achievement, representing a 

pseudo-reward. Participants were asked to rate 20 fruits and vegetables on a scale of 1-5 based on how 

much they liked them. This allowed us to identify 4 fruits and vegetables that the participant valued 

equally. These  four fruits and vegetables became the reward, non-reward, goal, or non-goal for the 

participant.  The participant was told that they would be choosing between boxes to open  and finding 

fruits and vegetables. There were two conditions: reward and goal. In the reward trials, there were two 

fruits/vegetables that could be found in reward boxes. The experimenter instructed the participant which 

vegetable would lead to points when found and which would lead to no points. In the EEG experiment, 

the amount of points accumulated translated to the participant’s bonus payment, so the fruit/vegetable 

became tied to an real-world external reward. In the behavioral experiments, there was no bonus payment 

offered. In the goal trials, the participant chose their own goal amongst two potential fruits/vegetables. 

The boxes leading to reward/non-reward and those leading to the goal/non-goal were different colors. 

This notified participants as to which condition they were in. The mapping between which vegetables 

represented the reward,non-reward, non-goal was held constant throughout the task. For both types of 

trials, participants sampled and learned about 4 pairs of boxes of various expected values and with 

probabilistic feedback Figure 1B).  We defined easy trials as pairings with reward contingencies of 

0.8/0.35 and 0.65/0.2,  while hard trials were defined as pairings with reward contingencies of 0.8/0.65 

and 0.35/0.2. The “correct” box in a pair was the higher-valued one.  Comparatively, easy trial pairs had a 

larger value difference between the two boxes, making the decision of which is the box more likely to 

lead to reward easier. Goal trials sequences and outcome contingencies were yoked to those of the reward 

trials to ensure identical reward histories.  
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Following the learning phase, there was a test phase in extinction. Participants continued to select boxes, 

but they did not receive feedback following their choice. This allowed the values acquired from the 

learning phase to be fixed. Participants encountered all possible pairings of the 8 boxes. This allowed us 

to ensure that participants learned the expected values of the boxes rather than an action policy (e.g. 

“when presented horizontal and vertical striped boxes, pick vertical striped”) and  to compare preferences 

between goal achievement boxes and reward boxes. In our analysis of test phase performance, we 

excluded trials of pairs previously seen in the learning phase and only analyze novel pairings. Choosing 

correctly on these trials requires having integrated reward histories to compute an expected value for each 

box. An easy choice is between a previously “correct” and one previously “incorrect” box, but a hard 

choice is between two previously “correct” or “incorrect” boxes. One pairing of  particular interest was a 

goal achievement box and a reward box of the same expected value (assuming goal achievement produces 

a pseudo-reward equivalently valued as reward). A systematic preference for one type suggests which 

type of outcome is more highly-valued.  

 

Temporal Structure within each trial and between trials 

After presentation of the box pair, participants had 1.5 s to choose a box using two keys (Q for left box 

and P for right box) on a standard computer keyboard. Their choice was displayed for an amount of time 

between 500 to 1000 ms. Feedback was then displayed for 750 ms. The intertrial interval was jittered 

between 500 ms and 1000 ms. Jittering discourages participants from predicting the temporal onset of the 

following trial. This is critical as this preparation can be reflected within the EEG (Luck, 2005, Cohen, 

2014).  
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Participants 

21 behavior only subjects and 40 EEG subjects participated in this experiment. 2 subjects were excluded 

from analysis for performing below chance during the last 60 trials of the learning phase suggesting that 

they did not engage in the task.  

 

Modeling Methods  

Reinforcement Learning Models Considered  

All models considered are either some variant of a reinforcement learning (RL)  model or contain an RL 

component. RL models implement a simple delta learning rule. The expected value, Q, of a stimulus is 

updated as a function of the difference between the actual reward and the predicted reward, 𝛿. The 

learning rate, 𝛼, scales 𝛿’s magnitude of impact on the updated Q value.  As 𝛼 increases, the more weight 

given to recent outcomes in updating the expected value.  

Q(t + 1) = Q(t) + 𝛼𝛿t 0 ≤ 𝛼 ≤ 1 (1) 
Choices are generated probabilistically from a softmax probability distribution such that actions with 

higher Q values have a higher likelihood of being chosen (Sutton & Barto, 1998).  

p(a|s) = e𝛽Q(a)/(e𝛽Q(a1)+e𝛽Q(a2)) (2) 
𝛽 is an inverse temperature parameter that controls the degree of exploration versus exploitation. An 

increase in 𝛽  decreases the degree to which the the higher valued option will be chosen.  

 

We add additional parameters to increase fits to behavior.  

Two Alphas: alpha Gain and alpha Loss 

We include two alphas, one for positive reward prediction errors and another for negative reward 

prediction errors to capture individual differences in impacts of positive versus negative outcomes 

(Frank, Moustafa, Haughey, Curran, & Hutchison, 2007) . 

Q(t + 1) = Q(t) + 𝛼+𝛿t  if  𝛿t  > 0 (3) 
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Q(t + 1) = Q(t) + 𝛼-𝛿t  if  𝛿t  < 0 (4) 
 

Forgetting 

To account for potential forgetting, we add a parameter, 𝜙,that controls the rate of decay of the 

unchosen box’s integrated value to the initial expected value, 0.5.  

Q(t+1) = Q(t) + 𝜙*(Q0 - Q(t))  0 ≤ 𝜙 ≤ 1 (5) 
Qo  = 1/na (6) 

There are two choices on each trial (na = 2).  
 
Sticky Choice  

Irrespective of value, participants have a tendency to pick the box on the same side as their last 

choice or have a tendency to switch sides as evidenced by results from our logistic regression 

model on test phase data (see results section). To capture this in our model, we add a “stickiness” 

parameter, s, that increases or decreases the probability the option chosen will be on the same side 

(left or right)  as the choice on the last trial .  

If previous choice left, 
P(choose left) =  1/(1 + e(-𝛽(Q(left)*s - Q(right))) (7) 

If right, 
P(choose left) =  1/(1 + e(-𝛽(Q(left) - Q(right)*s)) (8)  

Preference for Goal 

To quantify the value of pseudo-rewards relative to reward, we add a preference for reward 

parameter, r, that represents the value of receiving a pseudo-reward relative to reward.  

When reward is received, 
𝛿 = 1- Q(t) (9) 

When pseudo-reward is received, 
𝛿 = (r+ 1) - Q(t)      -1 ≤ r ≤ 1 (10) 

If r = 0, then rewards and pseudo-rewards are treated equivalently. r > 0 indicates pseudo-reward 

is more valued than reward, while r < 0 indicates it is less valued than reward.  
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RLWM Model 

There is evidence that the reinforcement learning system and working memory work cooperatively to 

enable quick and efficient learning (Collins et al., 2012). Thus, we combine two modules, a RL 

component  and a working memory (WM) one, in which each module learns the values of stimuli 

separately and makes a weighted contribution to the final action choice.  

 

The RL component is the RL model that provided the best fit, RLprefR.  

 

The task does not directly manipulate strain on the WM system, so we approximate it through casting it as 

a RL model with a high learning rate to capture the flexibility and quick updating characteristic of WM. 

The WM learning rate is constrained to be less than the gain and loss learning rates of the RL component. 

Defining 𝜃 this way, ensures that 𝛼RL ≤ 𝛼WM . 

𝜃 = 𝛼RL/ 𝛼WM    0 ≤ 𝜃 ≤ 1 (11) 
The probability of taking an action is determined with weighted contributions from both RL and WM 

modules according to:  

p(a) = p(a)WM*wWM + p(a)RL*(1-wWM) 0  ≤ wWM ≤ 1 (12) 
WWM  is a free parameter representing the weight of WM’s contribution to the final action choice. It is 

fixed as opposed to dynamically updated throughout the task.  

 

RLBayes Model 

The RLBayes model combines an RL module with a Bayesian learner module which infers the expected 

value of the stimuli. Each module separately learns the expected values of a stimuli and makes a weighted 

contribution to the final action choice.  
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The RL module implements the TD learning algorithm and includes additional parameters found in our 

RLprefR model and RLWM model:  𝛼+ and 𝛼-,  𝜙 for forgetting, and r for preference of reward. We add 

another parameter unique to this model: .  

Win-Stay Lose-Shift 

To quickly accumulate reward, one could employ a win-stay lose shift strategy in which an action 

is repeated if it has been rewarded while if unrewarded, another action is tried. However, this 

strategy does not help in learning the expected value of the actions. Models combining RL and 

WSLS models have been effective in capturing behavior in decision-making tasks (Worthy and 

Maddox, 2013), so we incorporated this strategy into our model through having a parameter, wsls, 

that increases the probability that a choice would be made if rewarded on the last trial with the 

considered pair.  

If previous choice was box A in pair AB and it was rewarded, 
P(choose A) =  1/(1 + e(-𝛽(Q(A)*wsls - Q(B))) (13) 

If unrewarded, 
P(choose A) =  1/(1 + e(-𝛽(Q(A) - Q(B)*wsls)) (14) 

The Bayes module infers the expected value of the stimuli given the data experienced according to Bayes 

rule:  

P(QA | D) = P(QA)*P(D | QA ) / P(D) (15) 
P(D | QA ) = number of times QA rewarded/number times QA chosen (16) 

P(QA (t+1)) = P(QA(t) | D) (17) 
The priors are the values put into the softmax equation to determine the probability of taking an action. 

We add an additional parameter to this component in the model to increase fits to behavior:  

 
Decay  
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Our Bayes module incorporates a decay parameter, 𝛄, that uniformly decays all priors to the 

initial expected value. Without a decay parameter, we find the values asymptote too quickly for 

the Bayes component of the model when compared to participant behavioral data.  

priorst+1= priorst*𝛄 + (1-𝛄)*priors0      0 ≤ 𝛄 ≤ 1 (18) 
 
The final probability of an action choice combines input from the RL and Bayes modules according to:  

p(a) = p(a)Bayes*wWM + p(a)RL*(1-wBayes) 0  ≤ wBayes ≤ 1 (19) 
 

WBayes  is a free parameter representing the weight of the Bayes module’s contribution to the final action 

choice. It is fixed as opposed to dynamically updated throughout the task.  

Parameter Fitting 

Parameters for each participant were estimated using individual behavioral data and MATLAB’s fmincon 

function to identify the set of parameters that produced the least negative log likelihood. Parameter 

estimation was performed 20 times, and parameters with the least negative log likelihood were used in 

simulations. This process was repeated on fits to three different sets of data: training phase data only, test 

phase data only, and both data sets.  

 
Model Comparison  

Akaike’s Information Criterion (AIC) was used to compare goodness of fit between models. AIC 

penalizes models with more free parameters. The model with the lowest AIC amongst candidate models is 

the one with the best fit. This is used as opposed to Bayesian Information Criterion (BIC) because of more 

accurate model prediction (see results section).  

AIC = -2ln(L)+2V (20) 
where L is the maximum likelihood of the model considered, and V is the number of free parameters in 

the model.  
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Model Simulation  

For each subject, fit parameters were used to run 100 simulations which were averaged to represent the 

behavior of that subject and their contribution to the group average. After running simulations and 

averaging for each subject, a group average was computed for training phase and test phase performance. 

This was then compared with group averages from participant’s real behavioral data to check if the model 

captures key aspects of behavior.  

 

EEG Methods 

EEG was recorded using a 64 channel BioSemi system. We used previously identified data cleaning and 

preprocessing methods (Cavanagh, 2009) facilitated by the EEGLab toolbox (Delorme & Makeig, 2004).  

 

Preprocessing EEG 

EEG was recorded continuously with hardware filters set to 0.1 and 100 Hz and  using a sampling rate of 

512 Hz. Data was visually inspected to identify epochs with artifacts for removal and noisy channels for 

interpolation. Eyeblinks were removed using independent component analysis from EEGLab. 

 

Model-based EEG analysis 

For ERP and multivariate regression analysis, data was band-pass filtered between 0.5 and 15 Hz and 

baselined to the average activity between -300 to 0 ms prior to feedback or stimulus presentation.  A 

regression approach was used to extract the effect of multiple variables of interest. For each subject we 

performed multiple regression at all electrodes and all time points within -300 and 800 ms of feedback or 

stimulus presentation (141 time points). 

 

 



Harhen 14 

For feedback-locked analysis, the main variables of interest were outcome valence (positive or negative), 

outcome type (reward or goal) , and trial-by-trial estimates of RPEs extracted from the best-fitting model. 

For stimulus-locked analysis, the model’s predictors were the Q value of the chosen option, whether it 

was a reward or goal trial, and the number of times the pair of stimuli (boxes) had been presented 

previously. Only training phase data was analyzed. All regressors both feedback-locked and 

stimulus-locked analysis were z-scored.  

Statistical analysis of GLM weights 

We tested the 𝛽 weights of all regressors against 0 across all subjects from each electrode and time point 

using a t-test with a threshold set to p=0.001.  

ERP 
For event-related potentials (ERP), data was band-pass filtered between 0.5 and 15 Hz. ERPs were 

baseline corrected to the average activity between -300 to 0 ms prior to feedback presentation.  

 
Corrected ERPs 

To plot corrected ERPs, the average of the predicted voltage was computed from the multi-regression 

model when setting all regressors but the one of interest to 0. This was subtracted from the true voltage 

leaving only the fixed effect, the variance explained by the regressor of interest, and residuals. For binary 

regressors, we plotted one ERP that was the average of trials with the effect and the other ERP is the 

average of trials without it. For continuous regressors, we did a median split on all the trials for the 

regressors and plotted one ERP that was the average of those trials above the median split and an average 

for those below the split.  

 

Time Frequency Analysis 

Time-frequency calculations were computed using custom-written Matlab scripts (Cavanagh et al., 2009, 

Cohen et al, 2008).  Time-frequency measures were calculated by multiplying the fast Fourier 
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transformed (FFT) power spectrum of single trial EEG data with the FFT power spectrum of a set of 

complex Morlet wavelets defined between 4 and 8 Hz, and taking the inverse FFT. Each epoch was cut in 

length (−500 to +1000 ms). The baseline for each frequency consisted of the average power from −300 to 

−200 ms prior to the onset of the cues. Whereas the ERPs reflect phase-locked amplitude changes, these 

time-frequency measures reflect total power (phase-locked and phase-varying). 

Results  
 
Behavioral 

1. Pseudo-rewards reinforce choices similarly to rewards 

 
Figure 2: a) Learning curves from the training phase for the four conditions. b) Test phase performance for four conditions and 
preference for reward.  
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Figure 3: Learning phase performance averaged over time and separated along two dimensions: outcome type and uncertainty.  

 

 
 
Figure 4: Beta weights sorted in ascending order from a logistic regression model predicting choice based on learning phase 
data. Regressors which were significant when t-tested against 0 have a red star next to the regressor name.  
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Results from 59 participants showed that they were able to learn the value of the stimuli from both 

rewards and pseudo-rewards as outcomes. The 360 trials of the learning phase were split into 6 time bins 

for analysis. There was an increase in proportion of correct choices from the first time bin to the last with 

no significant difference between reward and goal conditions at any trial bin (Figure 2; all p > 0.10), but a 

significant effect of uncertainty across the learning phase (Figure 2; all t(58) > 2.23 and all  p < 0.05). 

Uncertainty is determined by the difference in the true expected value between the presented boxes. There 

is greater uncertainty for box pairs that have less value difference between each other. We averaged over 

trial bins in the learning curves to remove the time component, and find that there was no interaction of 

condition and uncertainty on the overall proportion of correct trials (t(58) = 1.29 , p= 0.20), such that goal 

trial performance was less sensitive to conflict than reward-based learning (Figure 3). There may have 

been worse discrimination between easy and hard trials in learning from pseudo-rewards, but it was a 

non-significant difference. We predicted learning phase choices using a multiple linear regression model 

including regressors: outcome type (reward or pseudo-reward), uncertainty defined as the absolute value 

of the difference in expected value of the boxes, the number of iterations the pair of boxes has been 

presented, the interaction between reward and goal and uncertainty, and the interaction between 

uncertainty and pair iteration. Testing beta weights for each regressor against 0, the only regressors that 

had a significant effect were uncertainty, pair iteration, and the interaction between uncertainty and pair 

iteration (Figure 4; t(58) = -3.52, t(58) = -3.91, t(58) = 4.98, respectively; all p < 0.001). Consistent with 

our previous analysis (Fig. 3), there was no interaction of outcome type and uncertainty.  

 

For test phase analysis, we first split trials into four conditions along two dimensions: outcome type and 

difficulty. Trials with pairs previously seen during the learning phase were excluded from analysis as the 

“correct” for that trial could be arrived at from learning an action policy as opposed to integrating reward 

histories to compute an expected value for each item in the pair. Integration of reward histories is 
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characteristic of the RL system, so it is critical to test  that this is the mechanism generating correct 

choices.  Easy pairs have a larger value difference relative to hard pairs making it easier to identify the 

higher-valued choice within a pair. Participants performed above chance in all conditions, with a greater 

proportion of correct choices on easy trials as compared to hard trials (Figure 2). To understand what 

factors underlie a participant’s choice and how much weight these factors have relative to one another, we 

implemented a logistic regression model predicting the choices of participants during the learning phase. 

Results from a logistic regression model support that value was an important factor in determining choice 

(Figure 3; t(58) = 12.92, p < 10-4)  as well as previous trial choice (left or right) Figure 3; t(58) = -2.07, p 

= 0.0428). There was no interaction between value difference and value mean (Figure 3; t(58) = -0.976, p 

= 0.333).  

 
2. Individuals learn differently from rewards and pseudo-rewards as outcomes 

 
Figure 5: Beta weights sorted in ascending order from a logistic regression model predicting choice based on test phase data. 
Regressors which were significant when t-tested against 0 have a red star next to the regressor name.  
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Test phase analysis found no effect of outcome type on easy trial performance, but a significant effect on 

performance on hard trials (Figure 2; t(58) = -2.75, p = 0.0080). One test phase trial of particular interest 

was one in which a reward associated box and a goal achievement associated box with the same expected 

value (assuming the value of pseudo-reward is 1) are paired together. A systematic preference for 

choosing the reward or goal box would have indicated attaching a higher value to that type of outcome 

relative to the other. A significant preference for reward was present (Figure 2; t(58) = 2.08, p = 0.042). 

From beta weights obtained from the test phase logistic regression, participants were found to be less 

inclined to choose a goal box over a reward box regardless of value difference (Figure 5; t(58) = -2.44, p 

= 0.018).  However, the effect of the interaction between value difference and goal was not significant 

(Figure 4; t(58) = -0.87, p = 0.39). 

 

3. There are individual differences in preference for rewards over pseudo-rewards  

 
Figure 6: a) Histogram with each bar representing the number of subjects with that behavioral measure of preference 
for reward over pseudo-reward b) Correlation between preference for reward and number of mistakes made on trials 
with a reward box of higher value than the goal box, but the participant chose the goal box instead. A mistake in this 
case is considered choosing the lower valued goal box.  
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While there was a group-level preference for rewards over pseudo-rewards, the preference for reward 

measures were normally distributed, centered on 0.6, rather than being skewed towards 1 (Figure 6A). 

This indicates that there are individual differences in the value attached to pseudo-rewards. There was a 

strong correlation between a subject’s preference for reward measure and the number of goal-biased 

mistakes made on trials with a reward box that was a higher expected value than the goal box it was 

paired with, after removing subjects who made no mistakes (Figure 6B; Spearman 𝝆 = -0.9, p < 10-4). 

This suggests that these participants were systematically attaching an internally-defined additional value 

to goal achievement boxes over reward boxes.  

 
4. Rewards and pseudo-rewards are differentially valued gains, but are equivalent losses 
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Figure 7: a) Test phase performance for AC and BD trials (hard condition) only, separated by reward and goal condition trials. 
b) Same as a) but for AD and BC trials (easy condition) only. c) Effect of outcome type plotted as the difference in percent 
choices correct for AC, BD, AD, and BC trials. d) Effect of valence plotted as the difference in percent choices correct for hard 
(AC - BD performance) and easy (AD - BC performance) trials. e) Effect of difficulty on performance plotted as the difference 
between hard and easy trials  

 
We further refined our analysis of test phase performance by separating hard trials into AC and BD trials. 

In AC trials, both boxes presented have been attached to positive outcomes more so than negative while 

the opposite is true for boxes B and D. Separating these trials gives insight into differences in how 

participants learn from positive and negative outcomes. They performed significantly better on AC 

reward trials compared to AC goal trials, but there was not a significant difference in performance on BD 

trials (Figure 7A,C; t(58) = -2.75, p = 0.008; t(58) = - 0.49, p = 0.625). The majority of the effect of 

outcome type in hard trials was accounted for by differences in response to positive outcomes. In other 

words,  the effect was driven by differences in recieving a reward or a pseudo-reward  instead of 

differences in not recieving a reward or not recieving a pseudo-reward. Easy trials further separated into 

AD and BC trials. AD as a pair had a higher average value relative to BC. There is not an effect of 

outcome type in either AD or BC trials (Figure 7B; t(58) = -0.98 , p = 0.33; t(58) =0.88, p =0.38 ), but 
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there was an interaction between outcome valence and outcome type (Figure 7D; t(58) = -2.17 , p= 

0.034). This indicates that rewards and pseudo-rewards are valued differently as gains, but are equivalent 

losses.  

 
 
Modeling 
To understand the mechanisms producing the behaviors seen during pseudo-reward dependent learning, 

we use computational modeling. This method allows us to test if the same computations performed by the 

RL system on rewards are also performed on pseudo-rewards and it allows for comparison between 

candidate mechanisms for generating the difference in learning from the two types of outcomes.  

 
A preference for reward parameter is necessary to capture differences in learning from rewards and 
pseudo-rewards.  
 
Model Comparison

 
 
Figure 8: a) average AIC scores for each considered model b) average BIC scores 
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Figure 9: Confusion Matrices for AIC and BIC for 61 subjects. Sim  indicates that a data set was generated using that 
model, and Pred indicates that was the model predicted by AIC or BIC, after fitting the simulated data. The predicted 
model is the model with the lower of the two scores, meaning it better fit the data. The accurate predictions are along 
the left-right diagonal. We see that AIC misidentifies the correct model less than BIC for the RLBayes model. BIC is 
over penalizing RLBayes’ extra parameters.  
 

To compare the goodness of fit between models, we use AIC and BIC. The models with the lowest AIC 

and BIC were the RLprefR and RLBayes models (Figure 8). To determine which measure to rely on, first 

data is simulated using the best models. Then, the simulated data is fit to both the model it was generated 

from and the other model. Then, the measures can be compared according to highest number of accurate 

predictions and lowest number of misidentifications. Concretely, this means it computes a lower score for 

the model that actually generated the data. AIC produces the fewest mistakes, particularly for the 

RLBayes model (Figure 9). BIC overpenalizes its extra number of parameters. There is a marginal 

difference between the average AIC scores of the best models, RLprefR and RLBayes, but a large 

difference in average AIC scores with the three other candidate models (Figure 10A-B). We identify the 

model that best fits each individual’s behavior by picking the model with the lowest AIC score for that 

individual and find that the RLprefR and RLBayes models are the only models which are picked out as 

providing the best fit for individuals (Figure 10C).  
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Figure 10: a-b) The difference in AIC score between RLprefR and RLBayes, respectively, and the other considered 
models. c) histogram of the best fitting model based on AIC score for each subject 

 

We performed a “generate and recover” procedure to gauge the efficacy of our parameter estimation 

process for a particular model, and then compare between models of interest. Parameters estimated from 

real participants’ data were used to simulate a data set, thus the true parameters that produced the data 

were known. Then, a parameter fitting procedure was performed on the learning and test phase of the 

simulated data, and recovered parameters are compared to those that generated the data. There was a 

strong correlation between recovered and actual parameters (Figure 11; RLprefR:  all rho > 0.73 , all  p < 

0.0001 ; RLBayes: all rho > 0.56 except alphaN, rho = 0.33,  all  p < 0.0001). Recovery tends to be better 

for models with fewer parameters, which is consistent with our better recovery with the RLprefR model.  
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Figure 11: Correlation between parameters used to generate simulated data and the parameter estimated from our fitting 
procedure. a) RLprefR model b) RLBayes model 
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Model Validation 

 

 

Figure 12: Comparison between model simulation performance and behavior from participants a) Learning Phase performance 
b) Test Phase performance 
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With model validation, we check to see if the best models are able to capture important features of 

behavior through simulating data using parameters fit to participants’ behavioral data (Figure 12). 

Separate learning rates for learning from rewards or pseudo-rewards do not replicate key aspects of 

behavior. The models with the lowest AIC, RLprefR and RLBayes, are the only models able to produce 

the reward and goal learning curve separation and a preference for reward over pseudo-rewards. This 

implicates that the mechanism generating these differences in learning from the two outcomes is that they 

are differentially valued. To further validate our models, we compare estimated parameters with their 

corresponding behavioral measures. Of models with a preference for reward parameter both the RLprefR 

and RLBayes models produce parameters that are strongly correlated with the behavioral measure from 

the test phase (Figure 13; Spearman, 𝝆 = 0.66, p < 10e-4; 𝝆 =0.58, p < 10e-4, respectively).  

 

 

Figure 13: Correlation between behavioral preference for reward measure and the model extracted parameter for each model 
with a preference for reward parameter. RLprefR (rho = 0.66, p < 0.001), RLWM  (rho = -0.02, p = 0. 89), RLBayes  (rho = 0.58, 
p < 0.001) 
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It is important to note that there were certain aspects of behavior that no model was able to capture. 

These include the reduced effect of uncertainty for the goal condition in the learning phase, the 

significantly better performance on reward trials for the hard condition of the test phase, an effect of 

uncertainty for win-stay lose-shift behavior, and the difference in AC trial performance between reward 

and goal only trials (Figure 12AB, 14AB). For future work, it will be important to identify this additional 

mechanism that is  currently missing in our models.  

 
Figure 14: Comparison between models’ simulated performance and participants’ performance a) win-stay lose-shift behavior b) 
test phase performance for AC and BD trials separated by reward and goal only box pairs c) same as b) except with AD and BC 
trials  
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EEG 
 
From modeling, we have a better understanding of the computational mechanisms underlying learning 

from these two types of outcomes. But, to understand the neural mechanisms that generate this behavior, 

we use EEG to test if the same neural mechanisms responsible for learning from reward underlie learning 

from pseudo-rewards.  

1. There is a robust effect of outcome valence but not of outcome type on neural signal 
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Figure 15: ERPs a) ERPs in locked to events of outcome valence reward and no reward plotted together. Time points of 
significant difference (threshold = 0.001)  are plotted in black b) same as a) but ERPs locked to events of outcome type goal and 
no goal. c) Difference waves from electrode Cz comparing each of the four events to each other. Time points of significant 
difference (threshold = 0.001)  from 0  are plotted in black. 
 

 
Figure 16: Corrected ERPs plotted to visualize the effects of two regressors of interest. The dashed line is at the time point the 
scalp topography is observed at. . In black, we plot time points of significant difference (threshold = 0.001) . A) outcome valence 
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(positive or negative)  B) outcome type (reward or goal)  for three electrodes (FCz,Cz,POz) C) Scalp topography at 268 ms after 
feedback onset, plotting regions with significant thresholded  regression weights at that time point. 
 
For feedback-locked analysis, we replicate findings that fronto-central electrodes are sensitive to the 

distinction between positive and negative outcomes (Frank et al., 2005; Holroyd & Coles, 2002; Figure 

15). We see this effect in both the reward and goal condition. However, there are no electrodes are 

sensitive to the distinction between reward and pseudo-reward (Figure 15). We use a multiple regression 

approach to gauge the strength and spread of effect of variables of interest. Using a multi-regressor linear 

model to predict voltage allows for measurement of continuous effects that influence the signal such as 

RPEs which evolve trial-by-trial. Variables of interest included valence of outcome (positive or negative), 

type of outcome (reward or pseudo-reward/goal achievement), and positive and negative RPEs. From our 

RLprefR model, the RPE is extracted trial-by-trial for each subject. There is a strong and widespread 

effect of valence on fronto-central electrodes at the same time point of 260 ms (Figure 16) reinforcing our 

findings from basic ERP analysis and replicating previous findings using this multiple regression 

approach (Collins et al., 2016; Collins et al., 2018 ). Positive RPEs have a weaker and more localized 

effect. The area sensitive to this effect is more posterior than areas previously found (Collins et al., 2016; 

Collins et al., 2018). It is most likely noise and would be unable to withstand correction for multiple 

comparisons. No region was sensitive to negative RPEs.  

Taken together, we were unable to identify a region differentially sensitive to rewards and 

pseudo-rewards similar to results from basic ERP analysis nor from the multiple regression approach.  
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Figure 17:  ERPs locked to stimulus presentation a) We plot reward easy pairs and hard pairs together.  Time points of 
significant difference (threshold = 0.001)  are plotted in black b) same as a) but goal easy and hard pairs c) Difference waves 
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from electrode Cz comparing each of the four events to each other. Time points of significant difference (threshold = 0.001) 
from 0  are plotted in black. 

 

Figure 18: Results from multiple regression. The dashed line is at the time point the scalp topography is observed at. A-B) 
Corrected ERPs b) Effect of type of outcome tied to stimuli c) effect of number of times pair presented. In black, we plot time 
points of significant difference between the two ERPs (threshold = 0.001) C) Scalp topography at 268 ms for three variables of 
interest: Q-value of chosen option, type of outcome tied to stimuli (reward or pseudo-reward/goal achievement), and number of 
times pair has been presented.  
 

2. Number of times choices were presented produces a robust effect on neural signal while the value of 
the chosen option does not  
 

For stimulus-locked analysis, we compare the ERPs for when easy box pairs (defined as having a large 

difference in expected value) are presented versus the response to hard box pair presentation. 

Surprisingly, we did not find an effect of difficulty nor of type of box pair (reward or goal associated) in 

our three electrodes of interest (Figure 17). A multiple regression approach was used as was done 

feedback-locked analysis to extract the contributions of Q-values, type of outcome tied to stimuli (reward 

vs. pseudo-reward), and number of iterations a pair has been presented to the signal. Our Q-values are the 

value of the chosen stimuli which is estimated trial by trial for each subject using our RLprefR model. 

There is an effect of number of presentations on frontal and posterior electrodes at approximately 224 ms 

after stimulus onset (Figure 18, threshold = 0.001). This effect reflects a familiarity with the stimuli. The 

Q-value of the chosen option did not yield significant effects contrary to results from Collins and Frank 
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(2018) in which they found robust markers of Q values. The type of outcome tied to stimuli also did not 

produce a significant effect (Figure 17).  

 

3. Rewards or goal achievement as outcomes produce differences in theta power  
 

 
Figure 19: A-B) Corrected Theta Power over time. The dashed line is at the time point the scalp topography is observed at.  a) 
outcome valence. Time points of significant difference between positive and negative outcomes are plotted in black (threshold = 
0.001). b) Outcome type (reward or goal).  Time points of significant difference are plotted in black.  c) Scalp topography for 
outcome valence and type of outcome (reward or pseudo-reward/goal achievement) at 492 ms.  
 
Frontal midline theta (FMθ) has been suggested to reflect a common computation used to realize the need 

for control across several contexts (Cavanagh et al., 2011, Cavanagh and Frank, 2014) . It serves dual 

roles as a call for further control and as a teaching signal. Potentially, FMθ may reflect a common feature 

amongst several ERP components including ERN, FRN, and CRN, all of which are mapped on to 

cognitive processes that include the need for control. Cavanagh and colleagues (2011) found theta power 

to be more sensitive to between condition differences than ERPs, producing larger effect sizes. Because 

we did not find differences between the reward and goal conditions in our ERP analysis, we additionally 

analyze theta power to see if we can uncover differences that may have been obscured in those analyses. 

The same multiple regression approach was used for both feedback-locked and stimulus-locked analysis, 

however, instead predicting voltage the GLM predicts theta power. 
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Figure 20: Pearson’s correlations between behavioral measure for preference for reward, preference for reward parameter from 
model RLprefR, and averaged beta weights from group-level ROI. 𝞺 = 0.16, p = 0.32; 𝞺 = 0.12, p = 0.47, respectively. 
 

For feedback-locked analysis, variables of interest include outcome valence and outcome type (reward or 

pseudo-reward).  There was a  robust and widespread effect of outcome valence (positive versus negative) 

across fronto-central electrodes around 485 ms (Figure 19) replicating previous findings (Cavanagh et al., 

2010; Cavanagh et al., 2011). Those fronto-central electrodes at the same time point were also found to be 

sensitive to the distinction between reward and pseudo-rewards as outcomes (Figure 19). This region has 

been found, previously, to be sensitive to the valence of outcomes(Holroyd & Coles, 2002; Botvinick et 

al., 2004; Yeung et al., 2004; Frank et al., 2005), converging with our results from computational 

modeling indicating that the behavioral differences in learning from rewards and pseudo-rewards arise 

from the different valuations of the outcomes. To explore links between results from behavior, modeling, 

and EEG, we correlated the weighted average of beta weights for the electrodes in our region of interest 
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for the outcome type regressor with the behavioral measure for preference for reward and with the 

preference for reward parameter extracted from the RLprefR model. There was not a strong correlation 

between EEG beta weights and either the behavioral measure or preference for reward parameter (Figure 

20; Pearson,  𝞺 = 0.16, p = 0.32; 𝞺 = 0.12, p = 0.47).  

 

Figure 21: Theta power over time with time points of significant difference plotted in black  a) Q-Chosen regressor b) RG 

regressor c) Num regressor. Time points of significant difference are plotted in black (threshold = 0.001).  

 

For stimulus-locked analysis, variables of interest included the Q-value of the chosen option (Q chosen) , 

trial type (reward or goal, RG), and number of times the pair of stimuli had been presented previously 

(Num). There was no significant or widespread effect on theta power for any of our regressors (Figure 

21).  
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Discussion 

Previous studies were unable to directly compare how people learn from pseudo-rewards to rewards as the 

tasks used were hierarchically structured meaning that pseudo-rewards were elicited for only completion 

of lower level tasks while completing the overall task yielded a reward . Thus, differences in learning 

from pseudo-rewards and rewards in those tasks could also be attributed to learning at different levels 

within a hierarchy. We were interested in establishing 1) Does goal achievement generate a 

pseudo-reward that reinforces behavior using the same reinforcement learning system as extrinsic 

rewards? 2) how does learning differ from rewards and pseudo-rewards? 3) If there are behavioral 

differences, do they correlate with neural differences?  

 

To answer these questions, we developed a variant of the probabilistic selection task that enables direct 

comparison between learning from different types of outcomes. Specifically, it allows for probing the of 

preference for one type of outcome on test phase on trials in which participants had to choose between 

boxes of the same expected value, but one is tied to reward and the other pseudo-reward. If participants 

attached additional value to  pseudo-rewards potentially because they are internally defining its value, 

then we would see participants systematically choosing the pseudo-reward yielding box over the reward 

box. This would be interesting because it would be strong indication achieving a goal is generating a 

pseudo-reward to reinforce behavior. While we found that goal achievement has the ability to support 

learning as previous findings suggest (Ribas-Fernandes et al., 2011, Diuk et al., 2013) and learning 

progresses similarly from these two outcomes, overall, participants preferred rewards to achieving a goal. 

This could still be indicative of the generation of a pseudo-reward, but these results are consistent with 

other accounts. The similarity in learning may be due to participants being directed to choose a goal by 

the experimenter, and then seek it out. Thus, it is the experimenter who is defining that item as valuable to 

the participant rather than its value being internally defined by the participant. However, there are some 
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subjects who do exhibit a preference for pseudo-rewards over rewards, and the additional value is 

consistently attached to boxes leading to pseudo-rewards.  

 

Differences do exist between learning from rewards and pseudo-rewards. There was a reduced effect of 

difficulty for learning phase performance which is consistent with pseudo-rewards being less valued than 

rewards or different learning rates for the types of outcomes.  We replicate these findings that there are 

individual differences in the relative rates people learn from positive or negative outcomes (Frank & 

O’Reilly, 2004; Frank et al., 2007), and find there is an interaction with type of outcome, however, only 

for positive outcomes. Gains are differentially valued, while losses are not. This is reasonable because in 

both instances the outcome received is nothing.  

 

For modeling, a parameter that modulates the value of pseudo-reward relative to reward is the most 

effective mechanism for capturing the difference seen in behavioral results. Different learning rates for 

pseudo-reward and reward as outcomes were unable to replicate this effect. The RLprefR and RLBayes 

were the models that provided the best fits based on AIC scores.  The scores alone do not pick out a better 

model between the two, but the RLprefR model is preferred because parameters were better recovered 

that the RLBayes model, likely because of its lower number of parameters. Our key parameter, preference 

for reward,  is strongly correlated in both models with the behavioral measure from the test phase. It 

captures some of the difference in learning from the two outcomes. Even the best models, however, are 

unable to recreate certain aspects of behavior like decreased discriminability in learning from 

pseudo-rewards and worse performance on difficult reward only pairs test phase trials than participants. 

These models are flexible enough to capture these aspects given the right set of parameters, but the 

parameters we estimate from participant’s data do not produce it. Because these models are robust enough 

to produce the behavioral results, this suggests there is an another mechanism not accounted for by our 
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model that is producing these differences. There is a problem in hierarchical RL: if  PPEs  are conveyed 

by the same RL mechanisms as RPEs, how is credit assigned properly if they temporally coincide? 

(Botvinick, et al., 2009). Another mechanism that interacts with the RL system and produces a difference 

in the valuation of rewards and pseudo-rewards would eliminate this credit assignment problem. 

Identifying this additional mechanism, and incorporating that into new models is a future step to be taken.  

 

We find a similar neural signature for rewards and pseudo-rewards as predicted and  previously found in 

hierarchical reinforcement learning tasks (Ribas-Fernandes et al., 2011; Diuk et al., 2013). However, 

rewards and pseudo-rewards produce different strengths of theta power. There is greater theta power in 

fronto-central electrodes in response to pseudo-rewards as feedback when compared to rewards. This is 

consistent with the pseudo-rewards being relatively lesser valued. There is a wealth of evidence that theta 

power increases in response to errors as opposed to correct answers (Cavanagh et al., 2011, Cavanagh & 

Frank, 2014; Cohen, 2014), thus, theta power would be expected to increase for receiving an outcome that 

is relatively lower valued. These neural response differences to rewards and pseudo-rewards are only 

present in our analysis of theta power  but not in ERP analysis. This supports Cavanagh’s (2011) proposal 

that theta power is more sensitive to between condition differences than basic ERP components. Yet, we 

are unable to find strong links between behavior and neural signatures when we look at individuals. There 

is only a weak correlation between behavioral measures of preference for reward and the average theta 

power in the region sensitive to the difference between rewards and pseudo-rewards as outcomes.  

 

While we found differences in response to feedback, we were unable to find differences in response to the 

stimuli tied to different types of outcomes. Hence, we were unable to replicate findings from Collins 

(2014) that fronto-central electrodes are sensitive to the Q-values of options. However, Q-values are 

extracted from a model. The model was unable to capture all important features of behavior, so perhaps 
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the Q-values computed on a trial-by-trial basis do not align with the “actual” Q-values  that are proposed 

to be computed by the RL system (Bayer & Glimcher, 2005; Samejima et al., 2005;Fitzgerald et al., 

2012). With an improved model that produces more accurate Q-values, it is possible that there could be an 

effect of the Q-value of the chosen option in these areas, further emphasizing the need to identify other 

possible mechanisms to inform the development of  improved models.  

Conclusion 

Pseudo-rewards as feedback appear to support learning similar to rewards; however, they are relatively 

lesser-valued to reward. EEG results suggest that a similar neural mechanism underlies learning from 

rewards and pseudo-rewards replicating previous findings, but results from modeling suggest that there is 

another mechanism underlying learning from pseudo-rewards that we were unable to capture. Differences 

in theta power in the reward and goal condition implicate a mechanism related to the error-processing 

computations that take place in frontal regions. In further iterations, we hope to explore alternative 

mechanisms to explain the behavioral differences we see in learning from rewards and pseudo-rewards 

which can then inform further analysis of the neural data.  
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